Metabolic engineering strategies to increase n-butanol production from cyanobacteria
نویسندگان
چکیده
The development of sustainable replacements for fossil fuels has been spurred by concerns over global warming effects. Biofuels are typically produced through fermentation of edible crops, or forest or agricultural residues requiring cost-intensive pretreatment. An alternative is to use photosynthetic cyanobacteria to directly convert CO2 and sunlight into fuel. In this thesis, the cyanobacterium Synechocystis sp. PCC 6803 was genetically engineered to produce the biofuel n-butanol. Several metabolic engineering strategies were explored with the aim to increase butanol titers and tolerance. In papers I-II, different driving forces for n-butanol production were evaluated. Expression of a phosphoketolase increased acetyl-CoA levels and subsequently butanol titers. Attempts to increase the NADH pool further improved titers to 100 mg/L in four days. In paper III, enzymes were co-localized onto a scaffold to aid intermediate channeling. The scaffold was tested on a farnesene and polyhydroxybutyrate (PHB) pathway in yeast and in E. coli, respectively, and could be extended to cyanobacteria. Enzyme co-localization increased farnesene titers by 120%. Additionally, fusion of scaffold-recognizing proteins to the enzymes improved farnesene and PHB production by 20% and 300%, respectively, even in the absence of scaffold. In paper IV, the gene repression technology CRISPRi was implemented in Synechocystis to enable parallel repression of multiple genes. CRISPRi allowed 50-95% repression of four genes simultaneously. The method will be valuable for repression of competing pathways to butanol synthesis. Butanol becomes toxic at high concentrations, impeding growth and thus limiting titers. In papers V-VI, butanol tolerance was increased by overexpressing a heat shock protein or a stress-related sigma factor. Taken together, this thesis demonstrates several strategies to improve butanol production from cyanobacteria. The strategies could ultimately be combined to increase titers further.
منابع مشابه
Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis
Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of ...
متن کاملGenetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
BACKGROUND There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. RESULTS An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that ...
متن کاملMetabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae
n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endo...
متن کاملDesign and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
Saccharomyces cerevisiae has increasingly been engineered as a cell factory for efficient and economic production of fuels and chemicals from renewable resources. Notably, a wide variety of industrially important products are derived from the same precursor metabolite, acetyl-CoA. However, the limited supply of acetyl-CoA in the cytosol, where biosynthesis generally happens, often leads to low ...
متن کاملMetabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803
BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance i...
متن کامل